Scalable Routing Easy as PIE: a Practical Isometric Embedding Protocol

Julien Herzen (EPFL)

joint work with

Cedric Westphal (Huawei Innovations)
Patrick Thiran (EPFL)

October 18th, 2011
Internet routing has a scalability problem

- Costly recomputation of tables
- Instabilities
- Costly lookups in huge tables
- Energy hungry
- Heavily relies on Moore’s law to keep up
- Could get much worse with IPv6...
Fundamental limit

- **Stretch**: Length of a path found by a routing algorithm, divided by the shortest possible path length

[Gavoille et al. ’97]
For a network of n nodes, guaranteeing a stretch strictly below 3 requires routing tables of size $O(n)$

\Rightarrow Consider schemes that *may* inflate path length to achieve sub-linear scalability
Geometric routing

Each node needs to know only the coordinates of its neighbors

Forwarding: pick the neighbor closest to the destination

Problem: The packets can meet a dead end!
The Internet has a hierarchical structure
Tree routing

- Trees are easy to build distributively
- They can ensure 100% routing success (exactly one path between any two nodes)
Tree routing

- Trees are easy to build distributively.
- They can ensure 100% routing success (exactly one path between any two nodes).

Tree routing is not efficient...
PIE embeds trees into metric spaces

- Root has coordinate 0
- Binary representation of each child
PIE embeds trees into metric spaces

- Then recursively, each parent:
 - Send its coordinates to its children. The children keep the signs, but increase absolute values of these coordinates by link cost to parent.
 - If more than one child: the parent also sends the binary representation of each child, that is appended to the coordinates.
PIE embeds trees into metric spaces

• Then recursively, each parent:
 ▶ Send its coordinates to its children. The children keep the signs, but increase absolute values of these coordinates by link cost to parent
 ▶ If more than one child: the parent also sends the binary representation of each child, that is appended to the coordinates
PIE embeds trees into metric spaces

- Then recursively, each parent:
 - Send its coordinates to its children. The children keep the signs, but increase absolute values of these coordinates by link cost to parent
 - If more than one child: the parent also sends the binary representation of each child, that is appended to the coordinates
Routing using the embedding

Distance computation:
\(l_\infty \)-norm on the common coordinates

\[\begin{align*}
\begin{array}{c}
S \\
-2, 2, 2 \\
-2, 2, -2 \\
-2, -2, 2 \\
-1, 1, -1 \\
-1, -1, 1 \\
0 \\
-1, 1, 1 \\
1, -1, -1 \\
2, -2, -2, -1, -1 \\
2, -2, -2, -1, 1 \\
3, -3, -3, -2, 2 \\
4, -4, -4, -3, 3 \\
d
\end{array}
\end{align*} \]
Routing using the embedding

Distance computation:
\(l_\infty \)-norm on the common coordinates
Routing using the embedding

Distance computation: l_∞-norm on the common coordinates
Routing using the embedding

Distance computation: \(l_\infty \)-norm on the common coordinates
Routing using the embedding

Distance computation:
l_{∞}-norm on the common coordinates

\[d = 4, -4, -4, -3, 3\]
Routing using the embedding

Distance computation: ℓ_∞-norm on the common coordinates

\[\text{stretch} = 1 \]
PIE embeds trees into metric spaces

- This approach still guarantees 100% routing success
- It is better than tree routing
- But still lacks some topological information in some situations...
PIE embeds trees into metric spaces

- This approach still guarantees 100% routing success
- It is better than tree routing
- But still lacks some topological information in some situations...
PIE embeds trees into metric spaces

- This approach still guarantees 100% routing success
- It is better than tree routing
- But still lacks some topological information in some situations...
Solution: build several smaller trees

- Easy to build distributively (random self-elected roots)
- Still scalable if each node belongs to $O(\log n)$ trees
Solution: build several smaller trees

- Easy to build distributively (random self-elected roots)
- Still scalable if each node belongs to $O(\log n)$ trees
Solution: build several smaller trees

- Easy to build distributively (random self-elected roots)
- Still scalable if each node belongs to $O(\log n)$ trees

\[
\begin{align*}
 &d \quad 1 \quad 2, -1, -1 \quad -2, 2 \quad -2, -2 \\
 &-1 \quad 2, 1, -1 \quad 2, -1, 1 \quad -1, 1 \quad -1, -1 \\
 &-2 \quad 1, -1 \quad 2, -2 \\
 &S \quad 1, 1
\end{align*}
\]

stretch = 1
Trees covering several **levels**

- **Forwarding:** use common tree that provides smallest distance
- **Big trees:** good for long paths
- **Small trees:** good for short paths
- Match well the **self-similar** structure of the Internet
- $O(\log n)$ **levels** \rightarrow only $O(\log n)$ set of coordinates per node
Trees covering several levels

- Level 1
- Level 2
- Level 3
Trees covering several levels

Level 1

Level 2

Level 3

s

d

12 / 18
Trees covering several levels
Trees covering several levels
Trees covering several **levels**

Level 1

Level 2

Level 3
Wrapping up

Theorem 1
The number of coordinates is $O(\log^3 n)$ w.p. 1 for random power-law graphs

Proof uses recent results on the diameter of such graphs

Theorem 2
The embedding produced by PIE ensures 100% routing success

The embedding is *greedy*

- **Distributed**
 - Embedding procedure goes from root to leaves
 - Self-elected roots

- **Local and fast forwarding decisions**
 - Only compute a few distances
Performance

- Internet AS level[1]
- m: Number of levels
- Link weights $\sim \text{Unif}[1,10]$

Stretch CDF:

\[\text{proportion of routes} \]

\[\text{stretch} \]

Average stretch < 1.03 for 7 levels and more

[1]: DIMES [Shavitt et al. ’05], dataset of March 2010
Performance

- Synthetic graphs\(^1\), with power-law exponent \(\lambda\)
- Number of levels \(m \in O(\log n)\)

Low stretch scales with the size of the network

\(^1\): GLP [Bu et al. '02]
Scalability

- Number of levels $m \in O(\log n)$

Total number of coordinates per node (min, max, average):

Routing tables of size $O(\log^3 n)$
Resilience to network failures

Geometric coordinates provide route diversity for free

Routing success after failures:

For a given success ratio, PIE needs to re-compute its state less often
Conclusion

- **Distributed** construction of the coordinates

- **Scalable:** routing tables of size $O(\log^3 n)$ with probability 1

- **Efficient paths**
 - Can maintain average stretch < 1.03
 - Adapts well to weighted graphs

- **Guaranteed routing success** on any connected graph

- **Other applications:** overlay, peer-to-peer, distance estimation, etc...

- **Future work:**
 - Policy routing, traffic engineering, etc...
 - Economic considerations (who is the root?)
Congestion (number of packets relayed) CDF:

The congestion induced is the same than for shortest path routing.
Comparison with TZ, BC and TZ+BC

- Power-law random graphs with exponent λ
- Graphs and results for TZ, BC and TZ+BC come from [Brady et al. '06]

Average stretch:

![Graph showing average stretch for TZ, BC, TZ+BC, and PIE](image)